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Offshore wind turbine jacket structures are subjected to harsh marine environments, characterized by strong winds,
waves, and currents, that accelerate fatigue and joint deterioration. Traditional inspection and maintenance approaches
are largely reactive, involving costly access operations and extended downtime. Quiet failures such as hairline cracks or
lost bolts may go undetected until they precipitate catastrophic shutdowns, underscoring the urgent requirement for a
continuous, non-destructive monitoring methodology capable of early and precise damage detection.

Develop and evaluate a real-time structural health
monitoring (SHM) methodology based on transformer
neural networks to detect and localize cracks and missing
bolts in the jacket support of an offshore wind turbine
with high accuracy.

▪ By leveraging the high parallelizability of the transformer architecture, this proof-of-concept demonstrates real-time
damage detection and localization in offshore wind turbine jackets.

▪ The methodology’s 99.96 % accuracy and millisecond-scale inference support its integration into continuous SHM systems,
enabling predictive maintenance.

▪ Early identification of cracks and missing bolts promises reduced downtime, lower O&M costs, and extended turbine
lifespan.

Experimental Setup
A 1:10 scale jacket-type support (2.7 m) was excited by white-noise
inputs at four amplitudes while eight triaxial accelerometers captured
24 vibration channels over 1140 tests. Four damage conditions (healthy,
5 mm crack, missing bolt, replica bar) were introduced at each of the
jacket’s four levels.

Data Preprocessing
Each experiment recorded 60 s of vibration at 330 Hz. Recordings were
divided into 0.5 s windows to capture transient dynamics, reshaped into
multivariate feature vectors, standardized and split into 65 % training,
20 % validation, and 15 % testing subsets.

Transformer Model
An encoder-only transformer (two layers, four-head self-attention,
lightweight feed-forward sublayers with ReLU, dropout and residual
connections) projects each segment into embeddings and classifies into
13 structural states.

Training Protocol
The network was trained with RAdam (learning rate = 0.001, batch size
= 64) using early stopping (best at epoch 14/35).

Upon evaluation, the transformer-based SHM model achieved a test
accuracy of 99.96 %, with precision, recall, and F1-score all averaging
approximately 99.95 %. Inference on each 0.5 s window required only
~2.8ms, while total training time on an Apple M1 CPU was under six
minutes. The confusion matrix revealed only nine misclassifications
among 20520 test samples, all involving adjacent jacket levels without
confusion of damage type.

Yolanda Vidal
yolanda.vidal@upc.edu
CoDAlab 

Figure 1: Location of the sensors and levels of the
jacket support.

Figure 2: Data acquisition and reshaping flowchart.

Figure 3: Confusion matrix on the testing data set 
using the best model.

Table 1: Results obtained by testing the methodology with different 
architecture configurations of the transformer model.
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