

Andrés Velastegui dvelaste@espol.edu.ec FICT/CIPAT, Ecuador

Samuel Mora semora@espol.edu.ec FICT, Ecuador

Isabel Chuizaca isadchui@espol.edu.ec FICT/CIPAT, Ecuador Gina Peña gialpena@espol.edu.ec FICT/CIPAT, Ecuador

Vishal Mishra
vmishra1@ce.iitr.ac.in
Institute of Technology Roorkee, Indian

José Ochoa jochoa@sig-gis.com

University of Maryland, USA

SUSTAINABLE DEVELOPMENT CHALLENGES IN THE ECUADORIAN AMAZON: A CASE STUDY OF LAND USE AFFECT AND LANDSLIDE RISKS INDUCED BY A HYDROPOWER PLANT

INTRODUCTION

- Energy without air pollutants.
- Economic option for large-scale energy.
- Alter aquatic and terrestrial ecosystems.
- Harms biodiversity and water quality.
- Affects communities that depend on rivers.

OBJETIVE

Analyse land use and land cover (LULC) changes downstream of the CHCCS, using Sentinel-2 satellite images and spectral indices, to quantify the landslide areas around the Coca River tags.

Fig. 1. Study area

METHODOLOGY

Fig. 2 Flowchart of the applied methodology

RESULTS

Table 1. LULC areas in AOI.

Class	Area [ha]	%
Forest	13247.43	78.68
Grasslands	1986.48	11.80
Urban area	269.86	1.60
Bare soil	212.33	1.26
Water bodies	519.70	3.09
Sinkholes	472.35	2.81
Sand deposits	128.40	0.76

Fig. 3 Thematic LULC map

CONCLUSION

- NDVI, NDSI, and MNDWI revealed significant changes in the morphology of the Coca River.
- The mapping showed 473 ha of exposed soil linked to regressive erosion, and sediment transport altered the river's sinuosity (drift of 1.6 km).
- Hydroelectric construction in the Upper Amazon alters the river's natural flow, fragments landscapes, and degrades soil quality.

