



#### **Danilo Arcentales**

daanarce@espol.edu.ec Facultad de Ingeniería en Ciencias de la Tierra

Angel Ramírez aramire@espol.edu.ec Decanato de Investigación

### THE ENVIRONMENTAL PROFILE OF ETHANOL DERIVED FROM SUGARCANE IN ECUADOR: A LIFE CYCLE ASSESSMENT INCLUDING THE EFFECT OF COGENERATION OF ELECTRICITY IN A SUGAR INDUSTRIAL COMPLEX

Table 1. System expansion scenarios for the co-generation stage

#### **PROBLEM STATEMENT**

Nowadays, there is a general scientific consensus that observed trends in global warming had been caused by the indiscriminate use of fossil fuels in human activities.

#### **OBJECTIVE**

| Scenario                         | Type of generation displaced |
|----------------------------------|------------------------------|
| Average mix displacement         | Average electricity mix      |
| Marginal technology displacement | ICE operating on fuel oil    |
| No displacement                  | Not applicable               |

Develop a life cycle inventory for Ecuadorian sugarcane and sugarcane-derived ethanol production to quantify its environmental performance considering the effect of electricity co-generation produced in the sugar industry complex (Table 1).

## PROPOSAL

The International Organisation for Standardisation (ISO) provides the LCA standards through the ISO 14040 and 14044. LCA methodology consists of four stages: goal and scope definition, inventory analysis, impact assessment, and interpretation (Figure 1).



Figure 1. Anhydrous ethanol life cycle system boundaries and main product flows quantification for year 2018

#### **RESULTS**

The GWP impact generated at the farm gate level was reported as 53.6 kg of  $CO_{2eq.}$  per sugarcane due to N<sub>2</sub>O volatilization and diesel application in agricultural machinery. Considering the ethanol production level, the GWP impact was reported as 0.60 kg  $CO_{2eq.}$ /liter of ethanol (Table 2). Credits were received for displacing surplus electricity produced in the co-generation stage (Figure 2 and Table 2).



| Impact<br>category | Agricultural               | Milling                    | Distillation               | Cogeneratio<br>n              | Total               |
|--------------------|----------------------------|----------------------------|----------------------------|-------------------------------|---------------------|
|                    | Impact Indicator<br>Result | Impact Indicator<br>Result | Impact Indicator<br>Result | Impact<br>Indicator<br>Result | Indicator<br>Result |
| GWP (kg<br>CO2)    | 0.28582                    | 0.0013                     | 0.369                      | -0.05059                      | 0.606               |
| MDP (kg Fe)        | 0.00688                    | 0.00089                    | 0.0078                     | -0.0000048                    | 0.01557             |
| MEUP (kg N)        | 0.0018                     | 0.00001                    | 0.00206459                 | -0.00006459                   | 0.00381             |
| POFP (kg<br>NMVOC) | 0.00514                    | 0.00249                    | 0.01253                    | -0.00182                      | 0.01834             |
| TAP (kg SO2)       | 0.00499                    | 0.0012                     | 0.0098                     | -0.00071                      | 0.01528             |
| FEP (kg P)         | 0.0000928                  | 0.0000372                  | 0.00014                    | -0.00000031                   | 0.00027             |
| PMFP (kg<br>PM)    | 0.00341                    | 0.00083                    | 0.00589                    | 0.00006065                    | 0.01019             |

|                 | ethanoly   | ethanoly | Eq/It ethanon       | ethanoij | ethanoly      | ethanoly |
|-----------------|------------|----------|---------------------|----------|---------------|----------|
| Average mix dis | splacement | 🗖 Margii | nal technology disp | alcement | 🛾 No displace | ement    |

Figure 2. Comparison of LCA impacts at plant-gate for different system expansion scenarios.

Table 2. Impact categories in different stages to produce ethanol (FU = 1 L of ethanol).

# CONCLUSIONS

- Scenarios where system expansion is applied, led to lower impact values compared to the scenario where no surplus electricity is displaced
- Sugarcane industrial sector should increase its co-generation capacity in order to embraces its own electricity demand.
- Companies should apply industrial symbiosis and circular economy strategies to produce lesser environmental loads within ethanol production chain.
- Sugarcane growers must optimize synthetic fertilizers application by implementing precision agriculture to guarantee greater sustainability