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IMPACTS OF DIFFERENT OPERATION CONDITIONS AND GEOLOGICAL
FORMATION CHARACTERISTICS ON CO, SEQUESTRATION IN
CITRONELLE DOME, ALABAMA
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geological conditions and derive conclusions about the
factors influencing saturation and pressure plume size,
post-injection behavior, and the risk associated with them.

Figure 1. Location of Citronelle Field.
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Figure 3. CO, saturation distribution (left) and pressure

From the following Pareto charts, Figures 5, reservoir permeability  distribution (right) at the end of 3 years of injection for the
and injection rate obtained had considerable influence on the history-matched model.).
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Figure 5. Pareto and Normal plot charts of upscaled model using Figure 4. Saturation plume size vs. dimensionless number
saturation plume size for closed system. using upscaled model for semi-open system.

CONCLUSIONS

= The CO, plume expanded during the injection period, and it stabilized in a slower growth rate after injection.

= The plume degradation stop after injection could last a few years depending on the amount of CO, injected and the
porosity, permeability, and boundary condition of the formation.

= In open boundary cases, higher brine salinity resulted in lower CO, dissolution in brine and, as a result, lower impact on
both saturation plume extension and differential pressure extension compared to the closed boundary condition.



