Escuela Superior Politécnica del Litoral

Mario A. Fernandez mario.fernandez@dairynz.co.nz Research and Monitoring Unit, Auckland Council; ESAI Business School, Universidad Espíritu Santo Nancy E. Golubiewski nancy.golubiewski@ aucklandcouncil.govt.nz Ministry for the Environment, Auckland, New Zealand Jennifer L.R. Joynt jennifer.joynt@kaingaora.govt.nz Research and Monitoring Unit, Auckland Council Lauren A. Rhodes rhodes@espol.edu.ec Facultad de Ciencias Sociales y Humanísticas, ESPOL

Hot or not? Developing a spectrum of indicators-based assessments in approaching vulnerability to climate change

Problem

- Vulnerability assessments to climate change are used as tools to identify, develop, and support adaptation strategies.
- Indicator based assessments (IbAs) are often used in local government contexts.

General Objective

- We develop a range of IbAs through the Ordered Weighted Average (OWA) approach.
- We account for the degree of substitution and or compensation between the constituent indicators, and consequently the risk attitudes of policy makers and stakeholders on selecting adaptation and mitigation
- IbAs may be non-robust to small (and reasonable) changes in modelling assumptions.

strategies.

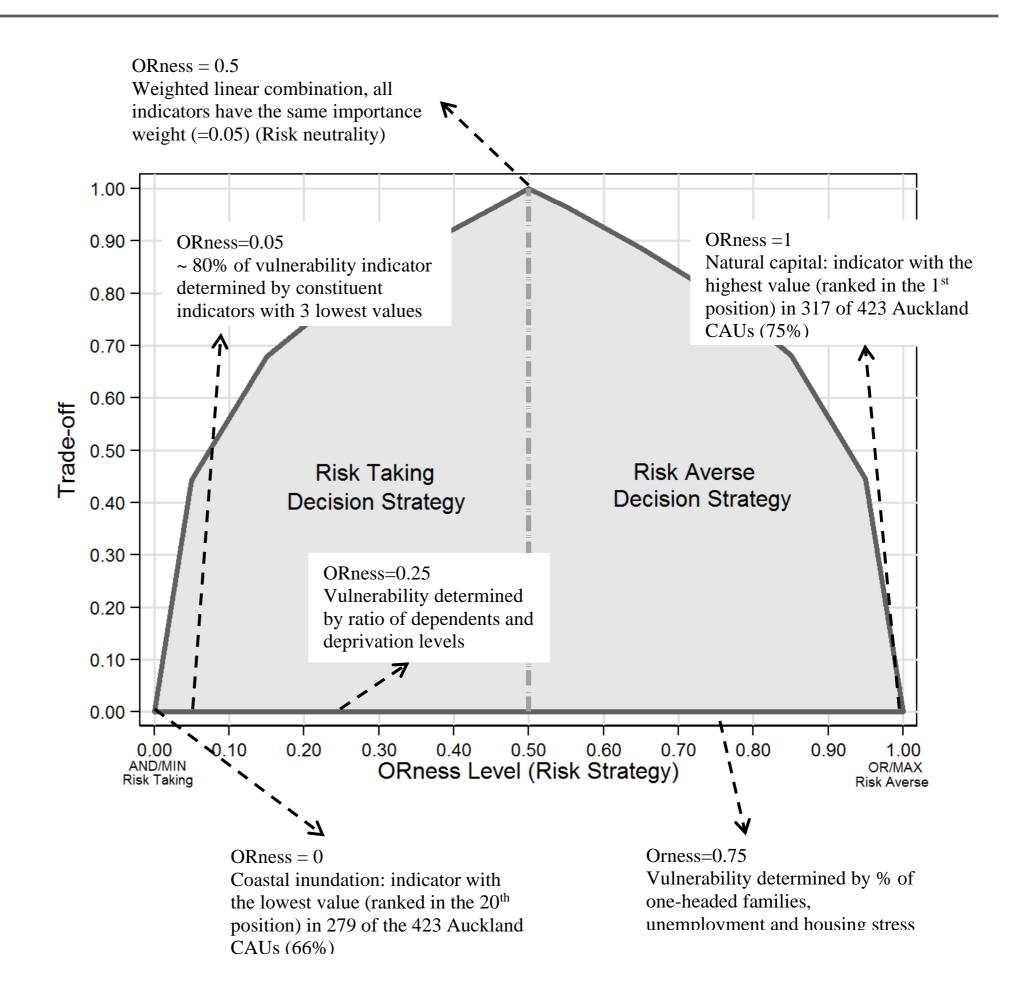
• We take Auckland, New Zealand as a case study.

Design & Data

The ordered weighted averaging (OWA) approach

- We implement the OWA approach using 20 constituent indicators representing 3 components of climate change vulnerability:
 - Adaptive capacity
 - o Sensitivity
 - o Exposure
- For each value of trade-off, estimated through the ORness value, the OWA is implemented as a nonlinear constrained optimization program:

Maximize Dispersion =
$$-1 \times \sum (W_{k(i)} \times \ln(W_{k(i)}))$$


s.t.

$$ORness = 1 - \left(\frac{1}{n-1}\right) \sum \left(n - iW_{k(i)}\right)$$

Index	Indicators	Functional relationship
Exposure	Coastal inundation - 1 meter sea level rise	Vulnerability ↑ as indicator ↑
	Dry days < 1 mm	Vulnerability \uparrow as indicator \uparrow
	Total precipitation percentage change	Vulnerability \uparrow as indicator \uparrow
	Heavy rainfall days > 25 mm	Vulnerability \uparrow as indicator \uparrow
	Hot days > 25	Vulnerability \uparrow as indicator \uparrow
	Mean temperature	Vulnerability \uparrow as indicator \uparrow
	Mean wind speed	Vulnerability \uparrow as indicator \uparrow
	Relative humidity	Vulnerability \uparrow as indicator \uparrow
Sensitivity	Deprivation Index	Vulnerability ↑ as
		deprivation index ↑
	Unemployment rate*	Vulnerability ↑ as
		unemployment ↑
	Ratio of population under 15 and over 65 of age to the population	Vulnerability \uparrow as rate of
	between 19 and 64 years of age*	dependency ↑
	Percentage of populated area relative to CAU area	Vulnerability↓ as %
		populated area ↑
	Percentage of one-headed families*	Vulnerability ↑ as % of one-
		headed families ↑
	Road density (Ratio of km of road per km ² of populated area)	Vulnerability \downarrow as ratio \uparrow
Adaptive Capacity	Average household income*	Vulnerability \downarrow as income \uparrow
	Housing stress (ratio of rent payments to household income)*	Vulnerability 1 as housing
		stress ↑
	Percentage of population that are owner-occupiers of house*	Vulnerability↓ as % owning
		house ↑
	Percentage of area on crops production	Vulnerability \downarrow as % on crops
		production 1
	Percentage of area on grass production	Vulnerability \downarrow as % on grass
		production ↑
	Percentage of forest cover to area of CAU	Vulnerability \downarrow as % of forest
		cover↑

- An ORness value of 0.5 represents full compensation or substitutability between indicators.
- The solution variables that maximize the Shannon's entropy measure are $W_{k(i)}$, the order weight assigned to each order k(i) for the *i*th constituent indicator.
- The order weights are used to construct a vulnerability index for each census area unit (CAU) in Auckland, NZ.
 - **RESULTS**
- We find that differnt trade-offs representing risk attitudes of policymakers imply spatial disparities in the identification of vulnerability hotspots.
- If risk averse, strategies would focus on minimizing vulnerability in areas with high exposure to coastal inundation due to sea level rise.
- Easing of risk aversion implies switching strategy focus to areas with relatively high levels of natural capital

- An ORness value of 0 implies that the vulnerability position of the CAU is determined solely by the smallest value (risk taking pattern of vulnerability).
- An Orness value of 1 implies that vulnerability position of the CAU is determined solely by the highest value (risk averse pattern of vulnerability).

(and associated ecosystem services).

CONCLUSIONS

- We demonstrate the importance of developing a range of IbAs through the OWA approach.
- We recommend the use of OWA assessments, and through ORness values, incorporate the perspectives of multiple stakeholders to develop policies suited to the contexts and realities of a city or region.
- Vulnerability maps developed through the OWA may show that complementarities and synergies exist where policy goals previously appeared to be contradictory on face value.